If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2-2k=0
a = 5; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·5·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*5}=\frac{0}{10} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*5}=\frac{4}{10} =2/5 $
| 11+7k=65 | | 8a-2=6a+6 | | b/16=3 | | 80+20h=120+15h | | 30-4x=54+(-2x) | | √2x2-7x+5=1-x | | √2x^2-7x+5=1-x | | (8x-6)=(3x+9) | | 4m+5=5m-7 | | 3x-8/3=2x-1 | | x+3.12=47 | | 2x2-7x+5=1-x | | 4/12=8b | | -4x–1=19 | | 5x-12.2=4x+12.8 | | 0.5x-3=0.18+5 | | (-4)x(-3)x=12 | | 4^((4-3x))=(1)/(16) | | 40+25x=45+0.35x | | 9x^2-252x+532=0 | | 10=-29+-r | | -11-5p=10 | | g/3+9=7 | | 7-3p=12 | | j-4.2/3=1.8 | | 2(u+2)=12 | | f/3-29=-21 | | 12r-6=138 | | z/4-14.84=17.85 | | 13.69=3.6x | | 4(t+19)=4 | | 6(t+75)=-48 |